The Global Observing System for Climate

IMPLEMENTATION NEEDS

Vision and Challenges

GCOS Secretariat, WMO
Carolin Richter, Simon Eggleston, Katy Hill, Caterina Tassone, Valentin Aich, Tim Oakley
GCOS Progress: Improving global climate observations

COP-22, Marrakech, Decision 19/CP.22 SBSTA Conclusions

- First Regional workshop held in Fiji for Pacific Island States
- Working group in Lightning starts work
- Working group on GCOS Reference Surface Network meets for first time

Support Adaptation & Mitigation

Water, Energy and Carbon cycles

Additional Essential Climate Variables

More help for networks in developing countries

Climate Indicators

2015

2016

2017

ECV Inventory: The Architecture for Climate Monitoring from Space in Action
Evolution of the observing system – Assessment in 2015

Data from IASI and NPP could not be used in 2006 version of assimilation system frozen for ERA-Interim. Use of data from Metop-B was not activated in 2012.

Data from FY-3 are a candidate for use in future reanalyses.

Coverage is for SSU-1, HIRS-2, MSU-4, AMSU-A10, AIRS-40.

Source: A. Simmons
Some continuing concerns, including

- deterioration of some *in situ* networks; lack of progress in filling gaps in others

- limited provision for limb sounding and reference measurement from space

but many improvements (that need sustaining) including

- quantity and quality of data from several *in situ* sources, including radiosondes

- quantity, quality and variety of data from satellites

- recovery and reprocessing of past data, both *in situ* and remotely sensed

- reanalysis, with coupling of atmosphere to ocean and land, and inclusion of chemistry

- conventional analysis of instrumental records

- converging temperature information from various observational and model datasets

and evolving requirements

- e.g. for global, ground-based, soil-moisture data to complement remote sensing and reanalysis
The new GCOS Strategy is being considered by the partners before its final adoption.
Networks contributing to global climate observations should be:

- Free and Open
- Transparent
- Accurate
- Useful
- Timely
- Use best available science

**Vision**

*a world where users have free access to the climate-related information they need*

**Aim**

to ensure the availability and quality of observations necessary to monitor, understand and predict the global climate system so that communities and nations can live successfully with climate variability and change
The GCOS implementation plan has an aim to improve the monitoring of the 3 climate cycles.

For carbon the target is to quantify:
- fluxes of Carbon related gases to ± 10%
- Changes in stocks of carbon to ± 10% on decadal scales on land and in the oceans
- Changes in atmospheric annually carbon stocks to ± 2.5%

GCOS has many ECV related to the carbon cycle, the main ones are:
- Ocean Inorganic Carbon
- Atmospheric composition of CO₂ and CH₄
- Greenhouse Gas Fluxes
- Soil Carbon, Aboveground biomass, Permafrost
Improving observations of the Global Carbon Cycle
new GCOS Implementation Plan aims to improve monitoring of Global Climate Cycles

• Carbon Budget
  • Quantify fluxes of carbon-related greenhouse gases to +/- 10% on annual timescales
  • Quantify changes in carbon stocks to +/- 10% on decadal timescales in the ocean and on land, and to +/- 2.5 % in the atmosphere on annual timescales

• Global Water Cycle
  • Close water cycle globally within 5% on annual timescales

• Global Energy Balance
  • Balance energy budget to within 0.1 Wm$^{-2}$ on annual timescales

• Explain changing conditions of the biosphere
  • Measured ECVs that are accurate enough to explain changes of the biosphere (for example, species composition, biodiversity, etc.)
Part of the Communication Strategy.
For describing the rate and range of climate changes, and also becoming an input into the UNFCCC
**Climate Indicators**

**Global Indicators**
- **Temperature and Energy**
  - Surface Temperature
  - Ocean Heat

**Indicators under development**
- Heat Waves

**Supplementary Indicators**
- Top of atmosphere energy balance
  - Methane
  - N$_2$O
  - Halocarbon GHG

**Atmospheric Composition**
- Atmospheric CO$_2$

**Ocean**
- Ocean Acidification
- Sea Level

**Cryosphere**
- Glacier Mass Balance
- Arctic and Antarctic Sea Ice

**Biosphere**
- Ecosystem change
- Snow extent

**Water**
Mean Temperature

Ocean Acidity

Atmospheric CO₂

Glacier Mass Balance

Mean cumulative mass balance of all reported glaciers (blue line) and the reference glaciers (red line). SOURCE: world glacier monitoring service http://wgms.ch/

Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations obtained at the Hawaii Ocean Timeseries (HOT) Program in the North Pacific over 1988–2015. Seawater pH (black points, primary y-axis) and carbonate ion concentration (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawaii Ocean Timeseries Data Organization & Graphical System (HOT-DGOS). (Source: US National Oceanic and Atmospheric Administration (NOAA), Jewett and Romanou, 2017)

Globally averaged mole fraction (measure of concentration), from 1984 to 2016, of CO₂ in parts per million (left), CH₄ in parts per billion (middle) and N₂O in parts per billion (right). The red line is the monthly mean mole fraction with the seasonal variations removed; the blue dots and line depict the monthly averages. (Source: WMO Global Atmosphere Watch)

Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations obtained at the Hawaii Ocean Timeseries (HOT) Program in the North Pacific over 1988–2015. Seawater pH (black points, primary y-axis) and carbonate ion concentration (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawaii Ocean Timeseries Data Organization & Graphical System (HOT-DGOS). (Source: US National Oceanic and Atmospheric Administration (NOAA), Jewett and Romanou, 2017)

Globally averaged mole fraction (measure of concentration), from 1984 to 2016, of CO₂ in parts per million (left), CH₄ in parts per billion (middle) and N₂O in parts per billion (right). The red line is the monthly mean mole fraction with the seasonal variations removed; the blue dots and line depict the monthly averages. (Source: WMO Global Atmosphere Watch)

Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations obtained at the Hawaii Ocean Timeseries (HOT) Program in the North Pacific over 1988–2015. Seawater pH (black points, primary y-axis) and carbonate ion concentration (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawaii Ocean Timeseries Data Organization & Graphical System (HOT-DGOS). (Source: US National Oceanic and Atmospheric Administration (NOAA), Jewett and Romanou, 2017)

Globally averaged mole fraction (measure of concentration), from 1984 to 2016, of CO₂ in parts per million (left), CH₄ in parts per billion (middle) and N₂O in parts per billion (right). The red line is the monthly mean mole fraction with the seasonal variations removed; the blue dots and line depict the monthly averages. (Source: WMO Global Atmosphere Watch)

Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations obtained at the Hawaii Ocean Timeseries (HOT) Program in the North Pacific over 1988–2015. Seawater pH (black points, primary y-axis) and carbonate ion concentration (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawaii Ocean Timeseries Data Organization & Graphical System (HOT-DGOS). (Source: US National Oceanic and Atmospheric Administration (NOAA), Jewett and Romanou, 2017)

Globally averaged mole fraction (measure of concentration), from 1984 to 2016, of CO₂ in parts per million (left), CH₄ in parts per billion (middle) and N₂O in parts per billion (right). The red line is the monthly mean mole fraction with the seasonal variations removed; the blue dots and line depict the monthly averages. (Source: WMO Global Atmosphere Watch)

Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations obtained at the Hawaii Ocean Timeseries (HOT) Program in the North Pacific over 1988–2015. Seawater pH (black points, primary y-axis) and carbonate ion concentration (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawaii Ocean Timeseries Data Organization & Graphical System (HOT-DGOS). (Source: US National Oceanic and Atmospheric Administration (NOAA), Jewett and Romanou, 2017)

Globally averaged mole fraction (measure of concentration), from 1984 to 2016, of CO₂ in parts per million (left), CH₄ in parts per billion (middle) and N₂O in parts per billion (right). The red line is the monthly mean mole fraction with the seasonal variations removed; the blue dots and line depict the monthly averages. (Source: WMO Global Atmosphere Watch)

Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations obtained at the Hawaii Ocean Timeseries (HOT) Program in the North Pacific over 1988–2015. Seawater pH (black points, primary y-axis) and carbonate ion concentration (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawaii Ocean Timeseries Data Organization & Graphical System (HOT-DGOS). (Source: US National Oceanic and Atmospheric Administration (NOAA), Jewett and Romanou, 2017)

Globally averaged mole fraction (measure of concentration), from 1984 to 2016, of CO₂ in parts per million (left), CH₄ in parts per billion (middle) and N₂O in parts per billion (right). The red line is the monthly mean mole fraction with the seasonal variations removed; the blue dots and line depict the monthly averages. (Source: WMO Global Atmosphere Watch)

Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations obtained at the Hawaii Ocean Timeseries (HOT) Program in the North Pacific over 1988–2015. Seawater pH (black points, primary y-axis) and carbonate ion concentration (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawaii Ocean Timeseries Data Organization & Graphical System (HOT-DGOS). (Source: US National Oceanic and Atmospheric Administration (NOAA), Jewett and Romanou, 2017)

Globally averaged mole fraction (measure of concentration), from 1984 to 2016, of CO₂ in parts per million (left), CH₄ in parts per billion (middle) and N₂O in parts per billion (right). The red line is the monthly mean mole fraction with the seasonal variations removed; the blue dots and line depict the monthly averages. (Source: WMO Global Atmosphere Watch)

Trends in surface (< 50 m) ocean carbonate chemistry calculated from observations obtained at the Hawaii Ocean Timeseries (HOT) Program in the North Pacific over 1988–2015. Seawater pH (black points, primary y-axis) and carbonate ion concentration (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawaii Ocean Timeseries Data Organization & Graphical System (HOT-DGOS). (Source: US National Oceanic and Atmospheric Administration (NOAA), Jewett and Romanou, 2017)

Globally averaged mole fraction (measure of concentration), from 1984 to 2016, of CO₂ in parts per million (left), CH₄ in parts per billion (middle) and N₂O in parts per billion (right). The red line is the monthly mean mole fraction with the seasonal variations removed; the blue dots and line depict the monthly averages. (Source: WMO Global Atmosphere Watch)
Example of potential remote sensing of implementation of adaption actions

Expected Mortality leads to Actions to cool Cities

Overall impact of these actions can be monitored remotely

GCOS Task Team on Adaptation, Terrestrial Observation Panel for Climate, Nigel Tapper, 2018.

Adelaide. SOURCE: modified Copernicus Sentinel data (2017), processed by ESA. CC BY-SA 3.0 IGO.
Adaptation, mitigation and climate indicators

Even the smallest pixel is too large

Need for higher spatial and temporal resolution
“Virtually all observations support adaptation.”

“We must model what we cannot measure (or predict with global systems).”

Adrian Simmons, Workshop on Observations for Adaptation, DWD, Offenbach, Feb 2013

Presentation: “The Global Climate Observing System: Observations and products from global to local”
• Benefit for climate observing systems, particularly in Africa but also in remote locations (Galapagos, Cook Islands, Maldives).

• Limitations due to resources available, and direct funding to the GCM trust fund has decreased significantly in recent years.

GCOS Cooperation Mechanism

• Africa remains by a long way the worse performing WMO Region according to the monitoring of the GCOS surface and upper-air networks (GSN & GUAN). Current requests for support from many National Services, totaling more than 1 million US$.

• Sustainable solutions are always the focus of GCM projects but this is reliant on the ongoing commitment from the National Service as continual funding is not possible. But technical support is.
MORE REAL ACTIONS:
• Held jointly with the WMO Integrated Global Observing System (WIGOS) and hosted by the Fiji Meteorological Office and supported by The Secretariat of the Pacific Region Environment Programme (SPREP)

• **Systematic upper air observations, lead to global benefits,** underpinning forecasting and climate reanalyses which form the basis of much of our understanding of climate and climate change;

• These observations in the Pacific region have the **highest impact, of all ground-based measurements,** on the global quality of weather and climate analysis and prediction.

• Both the spatial density and observing frequency currently fall short of GCOS and WMO requirements and a beyond the resources of SIDS.

• **These observations are a global good and therefore the upper air network over the South Pacific needs sustained international support.**

• National precipitation observations and often insufficient and unrepresentative

• Communications are a major regional issue

• The workshop developed an outline for a **Pacific region observing network plan** which will be presented to COP 24
Tracking heat and freshwater content changes in the ocean essential for closing global energy and water budgets.

A review is currently being planned by OOPC to evaluate whether the observing system can meet requirements.

**Ocean Heat Content:**
- Aim: Resolve annual cycle in heat content, at basin scale (level of uncertainty?)

**Freshwater content**
- Aim: Annual estimates. Challenges particularly in high latitudes re. Ice changes, River discharge.

Surface temperature is a weak indicator of Earth’s energy imbalance on decadal timescales

Palmer and McNeall [2014]

von Schuckmann et al [2016]

Ocean heat content change is a reliable on Earth’s energy imbalance on decadal timescales

Oceans absorbed >90% of the energy storage trapped in the atmosphere due to greenhouse gas emissions.

IPCC WGI Ch 3 &13
Wide scale monitoring of lightning is possible and a proxy for severe weather: GCOS is laying the foundations for NEW global climate observations.

Interest for climate applications:

- Indicator for trends of storminess under Climate Change
- Lightning produces NO, and is therefore impacting the climate

Handheld lightning detector from Boltek
Establishing global weather radar climate records

Changing extremes of precipitation are a major concern in a changing climate – e.g. floods. Observations need to have high spatial and temporal resolution; Radar can provide this but while OK for weather uses they do not provide consistent long-term information; NO global coverage, uniform method, data standards, continuity of observations, archive globally, or data exchange;

The GCOS Task Team on Climate Radar will develop a proposal for the framework for climate radar observations and data archiving.
A GCOS Surface Reference Network

- **Aims**
  - To achieve simultaneous high-quality observations of many ECVs
  - Provide reference data to constrain and calibrate more spatially comprehensive observing systems.

- **A Reference Network**
  - Is traceable to an internationally accepted standard and has a comprehensive uncertainty analysis and is validated;
  - Is documented in accessible literature and includes complete metadata description
  - Will measure temperature and precipitation and a range of other surface ECVs
  - May be based on existing networks such as the US Climate Reference Network and the Cryonet sites from WMO GCW

*Improved long-term accuracy, stability and comparability of observations.*